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Abstract. We study phase transitions in the colossal-magnetoresistive manganites by using a
mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-
exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb
interaction, with the parameters estimated from earlier density-functional calculations. The phase
diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the
competition between the double-exchange, superexchange, and Hubbard terms, the relative effects
of which are sensitively dependent on parameters such as doping, bandwidth, and temperature.
In accord with the experimental observations, several important features are reproduced from
our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic
to a metallic, charge-disordered ferromagnetic state near dopant concentrationx = 1/2, (ii) the
reduction of the transition temperatureTAF→F by the application of a magnetic field, (iii) melting
of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature
and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the
electron-doped systems, e.g., La1−xCaxMnO3 over the entire range of 0.5 6 x 6 1, and we
suggest that a multi-band model which includes the unoccupied t2g orbitals might be an important
ingredient for describing this feature.

1. Introduction

There have been many studies of doped manganites of the form Ln1−xAxMnO3, where Ln is a
rare earth like La, Nd, Pr and A is a divalent cation like Ca, Sr, Ba, Pb. Work in the 1950s and
1960s elucidated the nature of the magnetic ordering in these systems [1–3] and uncovered
the role of the double-exchange mechanism in stabilizing ferromagnetic phases [4–6]. Recent
work, motivated by the observation [7–12] of colossal magnetoresistance (CMR) in this class
of compounds, has focused on their intriguing magnetic and conduction properties. We refer
the reader to recent reviews [13,14] for a survey of such studies.

For our purposes here, it suffices to note the following features of these doped manganites.
The parent compounds are antiferromagnetic insulators; e.g., LaMnO3 has an alternating
antiferromagnetic arrangement of ferromagnetically ordered planes. When LaMnO3 is doped,
ferromagnetic phases are stabilized via the double-exchange mechanism as in La1−xCaxMnO3,
which is a ferromagnetic metal for 0.1 . x . 0.5. Further doping yields phases, often
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with complex structures, that are antiferromagnetic insulators [15, 16]. In addition, these
magnetically ordered phases can be charge ordered or charge disordered; forx = 0.5 this can
be thought of as Mn3+ ions on one sublattice and Mn4+ ions on the other, though fluctuations
often reduce such complete charge disproportionation. In some cases, as the temperatureT is
increased, insulator–metal transitions are seen; these are driven by the destruction of charge
ordering, reminiscent of the Verwey transition in magnetite [17], but, unlike the case for
magnetite, with an accompanying antiferromagnet-to-ferromagnet transition. For instance,
at low T , Nd0.5Sr0.5MnO3 is a charge-ordered antiferromagnet that has the complex CE
structure [3] and undergoes a first-order transition to a charge-disordered ferromagnet whenT

is raised [2,12,18,19].
Doping-driven, first-order ferromagnet-to-antiferromagnet transitions (presumably assoc-

iated with charge ordering) have also been reported for La1−xCaxMnO3 [15, 16], though the
question of first-order phase coexistence has not been investigated sufficiently, as we discuss
later. The transition from a charge-ordered antiferromagnetic insulator (AFO) to a charge-
disordered (or charge-non-ordered) ferromagnetic metal (FN) can also be obtained by changing
the magnetic fieldH ; e.g., in both Pr0.5Sr0.5MnO3 and Nd0.5Sr0.5MnO3 [18,20] the transition
temperatureTAF→F decreases rapidly with increasingH . There is also growing evidence that
charge ordering in Ln1−xAxMnO3 is related to the width of the eg band, which is in turn
determined by the average radius〈rA〉 of the A-site cations [13]: if〈rA〉 . 1.18, only charge
ordering is observed; if 1.18. 〈rA〉 . 1.25, charge ordering is observed at lowT but a metallic
ferromagnet (FN) appears asT is raised; if 1.25. 〈rA〉, only an FN phase is observed.

The broad aim of our present study is to understand the phenomena of charge ordering,
phase coexistence, and metal–insulator and magnetic phase transitions on the basis of a minimal
model. Notice that we do not discuss orbital ordering in our model. To describe orbital ordering
properly, phonon degrees of freedom—specifically, the coupling of the Jahn–Teller distortions
of the MnO6 octahedra to the electronic states—has to be included. This can be done without
much difficulty, but it makes the numerical calculations much more involved and complicates
the issues that we discuss in this paper. Instead, we take the point of view that, if charge
ordering exists, then an orbital ordering may follow, driven by the local Jahn–Teller distortions
of the MnO6 octahedra. In some sense, this point of view is similar to the description of
charge ordering in magnetite within the one-band Cullen–Callen model [22,23] for the Verwey
transition. We show that the coupled magnetic and charge-order transition observed in these
materials, specifically at or nearx = 1/2, is described very well by an electronic Hamiltonian
which, in addition to the double-exchange term, includes the Hubbard and extended-Hubbard
(nearest-neighbour) Coulomb interactions. As already mentioned, our model does not contain
an explicit electron–phonon coupling, although the static Jahn–Teller distortion in LaMnO3

is used to argue for the simple one-band model that we use. We believe that, as far as charge
ordering is concerned, electron–electron interactions are theprincipal driving mechanism;
electron–phonon interactions, beyond those responsible for the static Jahn–Teller distortion
used implicitly in our model, merely renormalize electronic parameters.

The basic features of the electronic structure [24–26] of the CMR manganites are
summarized as follows:

(1) The crucial states for the electron bands near the Fermi energyEf consist of Mn3d states
with a small admixture of O2p states; other levels, e.g., the La states, lie away fromEf .

(2) A large atomic exchange splitting ('3 eV) raises the energy of the minority 3d spins on
a given atom.

(3) Thus in LaMnO3 the configuration of the Mn atom is t2g(3)eg(1) whereas in CaMnO3 it
is t2g(3), with the Ca dopant in La1−xCaxMnO3 introducing holes into the system.
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(4) The octahedral crystal field raises the energy of the eg states with respect to the t2g states
by'2 eV.

(5) A partially filled eg band often leads to a Jahn–Teller distortion: for example, in LaMnO3

the half-filling of the doubly degenerate eg band leads to a Jahn–Teller distortion, which
splits the eg band into a lower eg(1) band and an upper eg(2) band, so band theory predicts
correctly that LaMnO3 is an insulator [24].

(6) In the double-exchange mechanism, the t2g states are considered to form a localized
spin S = 3/2, whereas the eg states are considered delocalized; however, they
interact with the localized spins via a Hund’s-rule couplingJH . This leads to an
effective ferromagnetic coupling between the localized Mn spins in addition to the
antiferromagnetic superexchange couplingJ . If the eg bands are either completely full or
completely empty, the absence of conduction electrons suppresses the double-exchange
mechanism.

The model Hamiltonian [27] that describes this physics is written as

H = −t
∑
〈ij〉,σ

c
†
iσ cjσ + h.c. +U0

∑
i

n̂i↑n̂i↓ +U1

∑
〈ij〉,σν

n̂iσ n̂jν

− J̃
∑
〈ij〉
Si · Sj − 2J̃H

∑
i

Si · si − µ
∑
iσ

n̂iσ − H̃ ·
∑
i

(Si + si ) (1)

where the Hamiltonian is restricted to Mn sites on a simple-cubic lattice. Heret is the hopping
amplitude for nearest-neighbour pairs of sites〈ij〉, c†

iσ andciσ are, respectively, creation and
annihilation operators for electrons on sitei with spinσ (σ = ↑ or ↓), n̂iσ is the associated
number operator,µ is the chemical potential which controls the mean filling if we work in
the grand-canonical ensemble,H̃ is the external magnetic field, which couples both to the
localized Mn spinSi and the conduction-electron spin density

si ≡ 1

2

∑
σν

(c
†
iστ σνciν)

(the three components ofτ are the Pauli matrices, whose components are in turn labelled
by σ andν, and we absorb gyromagnetic ratios and the Bohr magneton in the definition of
H̃), J̃H > 0 is the Hund’s-rule coupling,̃J < 0 is the antiferromagnetic superexchange
coupling between the localized Mn spins, andU0 > 0 andU1 > 0 are, respectively, on-site
and nearest-neighbour Hubbard-repulsion terms. If the orbital angular momentum is fully
quenched, the Mn spin hasS = 3/2. With the localized spins treated as classical, the energy
difference between the parallel and antiparallel alignment of the itinerant spin with respect to
the localized spin is given by 2̃JHS, which is about'3 eV from band calculations [24]. In
most of our studies we use the unit cell of the well-known ‘CE’ structure, a ubiquitous charge-
and spin-ordered structure in the manganites observed forx ' 0.5 [2, 12, 18, 19]. We define
the scaled couplingsJ ≡ J̃ S2, JH ≡ J̃H S, andH ≡ |H̃|S, and use the following as typical
parameters:

t ' 0.15 eV

JH ' 0.75 eV

U0 ' 10 eV

J ' 8 meV

U1 ' e2/(εr) ' 0.3–0.4 eV.

We have studied model (1) via exact diagonalization for finite clusters atT = 0 and by a
Hartree–Fock mean-field theory atT > 0 for the cubic lattice, which allows for ferromagnetic
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(or ferrimagnetic) and antiferromagnetic phases that can be either charge ordered or charge non-
ordered. Our studies yield a variety of interesting results which we summarize before giving
further details. AtT = 0 four phases appear: ferromagnetic charge ordered (FO) or charge
non-ordered (FN) and antiferromagnetic charge ordered (AFO) or charge non-ordered (AFN).
The FO and AFO phases are insulating, whereas the FN and AFN phases are metallic, i.e.,
metal–insulator transitions in this model are associated with the onset of charge ordering. The
energies of these phases are quite close to each other both in our exact, finite-size calculations
(figures 1 and 2) and in our mean–field theory (figures 3 and 4); so, by varying parameters
such asU1, x, andH , we can induce (first-order) transitions between them as illustrated in
figure 5.

The model accounts for the coupling between charge and spin degrees of freedom, so
charge ordering also leads to a change in the magnetic ordering. Small changes in the
Hamiltonian parameters can lead to different ground states. For example, atx = 0.5 and
T = 0 (figure 4(b)), we find that, above a critical value ofUc = U1/t ' 2, the ground state
is AFO, while for lower values, we obtain an FN ground state. Since the estimated value
of U1/t for the manganites is quite close toUc, our theory offers a natural explanation for
why some of these manganites are in the FN phase whereas others are in the AFO phase.
Furthermore, figure 4(b) illustrates that, as we increase the bandwidth (by increasingt) at
T = 0, we stabilize the ferromagnetic phase without charge ordering; conversely, if we lower
the bandwidth we stabilize the antiferromagnetic, charge-ordered phase; these trends are in
good agreement with experiments [13]. Figures 5(a) and 5(b) show how the band gap and the
charge-order parameter jump at the FN–AFO transition atx = 0.5 andT = 0; note that the
band gap is in good agreement with experiments [28].

The phase boundaries atT = 0 persist atT > 0 and appear as first-order boundaries in
a T –µ phase diagram. Since all experimental phase diagrams are shown in theT –x plane,
we have converted ourT –µ phase diagrams intoT –x phase diagrams. Note that first-order
boundaries inT –µ phase diagrams correspond to regions of two-phase coexistence inT –x
phase diagrams; and a maximum in a first-order phase boundary in theT –µ plane becomes a
point of equal concentrationor azeotropic point[30] in theT –x plane. The mean-field phase
diagram that we obtain for our model is shown in figures 6 and 7. The AFO phase in our model
exists in a narrow range nearx = 1/2 and also nearx = 0 or 1. Forx = 1/2, the AFO phase
is bounded on both sides by two-phase coexistence regimes (coexistence of AFO and a weakly
charge-ordered FO), which meet at a point of equal concentration atT = TAF→F ('0.03 eV
for the parameters of figure 7). The temperature at which this point of equal concentration
appears drops rapidly with the magnetic fieldH as shown in figure 8; this is in agreement with
experiments [18,20]. On further increasingT , the degree of charge ordering in the FO phase
increases, until a first-order FO–FN transition occurs atT ' 0.2 eV, and, at much higher
temperaturesT ' 1 eV, a continuous FN–PN transition results as shown in figure 6; here PN
stands for an insulating, non-ordered, paramagnetic phase.

There are two effects that should lower the FN–PN transition temperature substantially,
namely, (i) the fluctuations neglected in the mean-field theory and (ii) the dynamical Jahn–
Teller coupling between electrons and phonons [31,32], which leads to the isotope effect [33].
The first is a well-known deficiency of the mean-field theories, while, in a recent study, we
have shown that the second effect, namely, the dynamical Jahn–Teller coupling, leads to a
reduction of the transition temperature by about a factor of three for the manganites [32]. Both
of these effects have been omitted in the present theory. Because of this, our calculatedTc for
the FN–PN transition is too high as compared to the experimental values.

The remaining part of this paper is organized as follows. In section 2 we describe our
exact-diagonalization studies on finite clusters. Section 3 contains our finite-temperature,
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mean-field calculations and the results that we obtain from them. Section 4 discusses the
experimental implications of our results.

2. Double exchange in extended systems (T = 0)

Zener’s double-exchange (DEX) mechanism [4] was developed by Anderson and Hasegawa [5]
for the case of two atoms, where an itinerant electron moves back and forth between the atoms,
each carrying a localized spinS, aligned at an angleθ with respect to each other. They showed
that, if the Hund’s-rule energy is taken to be infinity, then the effective hopping amplitude is
t cos(θ/2). This interaction is ferromagnetic and, if strong enough, is sufficient to overcome the
AF superexchange between the two atoms, thereby producing a net ferromagnetic interaction.

The DEX ideas can be extended in a straightforward manner to the case of the lattice.
But now both the formation of the electron bands and the Coulomb interaction terms must
be taken into account. In fact, on general grounds, one may expect the Coulomb interaction
to reduce the effect of the DEX interaction, by forcing the electrons to move in a correlated
fashion, thereby reducing their kinetic energy. The Coulomb interaction is very important if the
number of the itinerant electrons (or holes) is high, and leads to the charge-ordered structures
for La1−xCaxMnO3 and related systems near half-filling (x ' 1/2).

To examine the DEX mechanism for an extended system, we have performed an exact-
diagonalization study of the ground-state energy for the Hamiltonian (1) for a finite cluster
with the magnetic field set equal to zero and by taking a fixed number of electrons. In order
to make the calculations tractable, a square lattice was taken and a finite cluster consisting of
twelve lattice sites (3× 4) with periodic boundary condition was chosen. Here we restrict
ourselves to comparing ferromagnetic (F) and Néel antiferromagnetic (AF) arrangements of
the localized spins [34]. The (classical) localized spins provide a fixed magnetic background
in which the itinerant electrons move. We express the many-electron ground-state as a linear
combination of the fermion configurations|i〉, |G〉 = ∑i αi |i〉, and obtain it by a numerical
diagonalization of the many-electron Hamiltonian via the Lanczos method.

Our results from these exact-diagonalization studies are shown in figures 1 and 2. We have
omitted the superexchange term in the figures, i.e.,J is set equal to zero. The superexchange
energy can be determined quite simply, since the localized spins are treated as classical. Thus,
for AF superexchange, the energy of the AF state is reduced with respect to that of the F
state by the amount 2J times the number of nearest-neighbour bonds, which is of course
independent of the number of itinerant electrons in the system. Figure 1 shows the variation of
the ground-state energy with the number of electronsN for both F and AF alignments of the
localized spins. Our 12-site system can accommodate up to a total of 24 electrons. However, in
figure 1, we have only shown the results for up to 12 electrons. The case with more electrons is
uninteresting, because the upper Hubbard band that becomes occupied in this case is separated
from the lower one by a large energy∼(U0 +JH ), and, as a result, it is unlikely to be occupied
in the crystal. In the language of the Hubbard model, we consider fillings between 0 and 1/2,
which correspond to dopant concentrationsx between 0 and 1.

The general trend in the energies in figure 1 can be understood by considering the dominant
terms in the Hamiltonian, which are the Hund’s-rule termJH and the nearest-neighbour
Coulomb interaction termU1. The former contributes an energy−JH × N , whereN is
the total number of electrons; this arises because of the filling of the electron states with spins
aligned parallel to the localized spins. When the average electron densityn becomes greater
than one half-electron per site, the addition of an electron raises the energy on average by
an amountzU1 because of the nearest-neighbour Coulomb term (z, the number of nearest
neighbours, is 4 for the square lattice). Thus, these two terms lead to the energyE = −JHN if
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Figure 1. Energies of the ferromagnetic (F) and antiferromagnetic Néel (AF) states obtained from
exact diagonalization on a 12-site (3× 4) cluster on a square lattice. The inset shows the ordered
AF lattice of the Mnt2g spins and the unit cell used with periodic boundary conditions.N is the total
number of electrons andn = N/12 is the electron density per site. The Hamiltonian parameters
are: U0 = 5 eV, U1 = 0.3 eV, t = −0.1 eV, andJH = 0.25 eV. Also, hereJ = 0. A finite
antiferromagneticJ shifts the energy of the AF state down with respect to that of the F state by a
fixed amount, irrespective ofN .

Figure 2. Double-exchange energy, obtained by taking the energy difference between the AF and
the F states of figure 1 for two different values ofU1. Individual points are joined by lines to guide
the eye. Note the significant reduction of the double-exchange energy nearn = 1/2 for the case
of U1 6= 0, caused by the reduction of the kinetic energy due to Coulomb correlation produced by
the nearest-neighbour Coulomb term.

N 6 6 andE = −JHN + 4U1(N −6) if 6 > N > 12 (N = 6 corresponds to the filling factor
of one electron per Mn site). This trend is very clearly seen in figure 1. In addition to this,



Mean-field theory of charge ordering 8567

for both AF and F structures, there is a gain in the kinetic energy, but this gain is significantly
higher for the F state because of the double-exchange interaction, so the total energy of the F
state is always lower than that of the AF state. Note that we have setJ = 0 in figure 1. Now,
for an antiferromagnetic superexchangeJ , the energy for the AF state in figure 1 is reduced
by a fixed amount with respect to that of the F state. IfJ is very large, the system is always
AF, the DEX interaction being insufficient to induce ferromagnetism in the system. IfJ is
small, then there exists a range of concentrationx where the system is ferromagnetic, and a
range where it is antiferromagnetic.

The energy difference between the AF and the F states is shown in figure 2. We see that,
even though the F state is energetically favoured over the AF state, forn ' 1/2, the double-
exchange gain of energy is considerably diminished. This shows clearly that the nearest-
neighbour Coulomb interactionU1 has an important effect in this range. To illustrate the
point further, we have performed a separate calculation with identical Hamiltonian parameters
except forU1 which we now choose to be zero; the energy difference between AF and F states
does not show a dip forn ' 1/2 in this case (figure 2). Instead, forU1 = 0, we obtain
the result that might be expected—namely, that the larger the number of the itinerant carriers
(electrons or holes), the stronger the double-exchange energy gain. This clearly shows how
the nearest-neighbour Coulomb interaction competes with the double-exchange mechanism
especially forn ' 1/2. We will show in the next section that the former is also crucial in
stabilizing charge-ordered phases nearx = 1/2.

Exact-diagonalization calculations are only feasible for small clusters of sites. All of our
studies on the infinite, three-dimensional lattices reported in this paper are performed with
mean-field (Hartree or Hartree–Fock) methods. In view of the fact that the spin-flip terms may
be present in the Hamiltonian (e.g., if spin-quantization axes are chosen differently for different
atoms), the terms containing expectation values of spin-flip operators such as〈c†

i−σ cjσ 〉 in the
HF approximation must now be retained. Thus the HF approximation for the NN Coulomb
interaction term is given by the expression

U1

∑
σσ ′

n̂1σ n̂2σ ′ = U1[〈n̂1〉n̂2 + n̂1〈n̂2〉 −
∑
σ

c
†
2σ c1σ 〈c†

1σ c2σ 〉 + c†
1σ c2σ 〈c†

2σ c1σ 〉

−
∑
σ

c
†
2σ c1−σ 〈c†

1−σ c2σ 〉 + c†
1σ c2−σ 〈c†

2−σ c1σ 〉]. (2)

Before describing our finite-temperature mean-field theory (section 3) we wish to point out
that, atT = 0, the competition between the double-exchange and nearest-neighbour Coulomb
terms mentioned above also emerges from a mean-field approximation.

To this end, we have calculated the total energies for the F and the Néel AF (also called the
‘type-G’ structure) states for model (1) on a simple-cubic lattice by using the self-consistent
Hartree–Fock (HF) method. The HF results (figure 3), show the same qualitative trend as
found in our exact-diagonalization study—namely, that the energy difference between the F
and AF states is smallest nearn ' 1/2 because of the nearest-neighbour Coulomb interaction.

Notice that nearx = 1, the energy of the AF state is somewhatlower than that of the F
state in both the exact-diagonalization and the Hartree–Fock results (figures 1 and 3). This
can be shown to be due to hybridization with the upper Hubbard band in the model. This
illustrates an important point—namely, that hybridization with energetically higher bands in
the system can reverse the DEX interaction to favour antiferromagnetism. Such considerations
may be important in understanding the AF state in La1−xCaxMnO3 for the range of dopant
concentrationx > 0.5.
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Figure 3. Energies of the F and the Néel AF states for the simple-cubic lattice (type-G structure)
obtained from the self-consistent Hartree–Fock calculation. The superexchange termJ is taken to
be zero.

3. Mean-field calculations atT > 0

For T > 0 we have studied model (1) by using a mean-field (Hartree) approximation [35].
Specifically we use a Gibbs–Bogoliubov–Peierls variational principle [36] in which we write

H = Hquas +Hf luc (3)

where the subscripts stand for quasiparticle and fluctuation, respectively;

Hquas = −t
∑
〈ij〉,σ

c
†
iσ cjσ − (µ + J̃HMz

i − H̃ )
∑
i

n̂i↑ − (µ− J̃HMz
i + H̃ )

∑
i

n̂i↓

+ U0

∑
i

(n̂i↑fi↓ + n̂i↓fi↑) +U1

∑
i,σν

(
n̂iσ
∑
j

′
(fjν)

)
−
∑
i

(
H̃ + J̃

∑
j

′Mz
j + J̃H (fi↑ − fi↓)

)
Szi

− U0

∑
i

fi↑fi↓ − U1

∑
〈ij〉,σν

fiσ fjν

+ J̃
∑
〈ij〉
Mz

iM
z
j + J̃H

∑
i

Mz
i (fi↑ − fj↓). (4)

Here
∑′

j denotes a sum over all sitesj that are nearest neighbours ofi, and we have allowed

magnetic ordering in the direction of̃H (henceforth thez-direction). Hf luc follows from
equations (1), (3), and (4). The variational parametersfi,σ andMz

i are determined by
minimizing a variational grand potential�var discussed below. The minimum of�var is
achieved [36] when these parameters are equal to the charge and magnetization densities [37],
respectively, which satisfy self-consistency conditions. Finally the magnetic order parameters
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Mi ≡ 〈Si〉 satisfy the self-consistency equations

Mi = BS
(
β

(
J
∑
j

′
Mj + JHmi +H

))
(5)

whereβ ≡ (kBT )
−1, kB is the Boltzmann constant, the prime on the sum denotes nearest

neighbours of sitei, the spin densitymi ≡ 〈n̂i↑ − n̂i↓〉, andBS is the Brillouin function, for
S = 3/2. Furthermore, we write the HamiltonianHquas (equation (4)) in Fourier space using
Bloch symmetry and then diagonalize the resulting Hamiltonian matrix for each point in the
Brillouin zone (for the CE structure, we have a 32× 32 matrix, there being 16 sites in the unit
cell). The charge densitiesniσ ≡ 〈n̂iσ 〉 are determined self-consistently from the eigenvectors
of the effective mean-field Hamiltonian. For the CE structure and withH = 0, there are a
total of six order parameters in our model—namely,Mi,mi, andni = 〈ni↑ + ni↓〉, with i = ◦
or i = • being the two types of Mn site in the CE structure with nominal valence Mn4+ and
Mn3+, respectively. ForH > 0, in total twelve order parameters are required. We solve
our self-consistency conditions by a numerical iteration scheme [38]. These equations have
many solutions, so we start our iteration scheme with as many as 60 initial guesses and, if we
find multiple solutions, which we occasionally do for parameters close to the phase transition
regions, we pick the one which yields the lowest value of the variational grand potential [36,37]
per cell:

�var = −8U0(n•↑n•↓ + n◦↑n◦↓)− 8U1(n
2
• + n2

◦ + 4n•n◦)
+ 8J (4M•M◦ +M2

• +M2
◦ ) + 8JH [M•(n•↑ − n•↓) +M◦(n◦↑ − n◦↓)]

− T

Nk

∑
k

ln[1 + exp(−βω(k)] − 4T
∑
i=•,◦

ln
sinh(βHeff

i (2S + 1)/(2S))

sinh(βHeff

i /(2S))
.

(6)

HereNk is the number ofk-points that we use in summing over the Brillouin zone,ω(k) are
the eigenvalues obtained by diagonalizing the 32× 32 matrix at eachk-point, andHeff

i , the
effective fields at sitesi (=•, ◦), are

Heff
• ≡ J (4M◦ + 2M•) + JH (n•↑ − n•↓)

Heff
◦ ≡ J (4M• + 2M◦) + JH (n◦↑ − n◦↓).

(7)

Note that in the CE structure, each Mn site is surrounded by four sites of its own kind (• or ◦)
and two of the other kind. Note also that throughout this paper, the dopant concentrationx is
related to the electron concentrationn by the expressionx = 1− n, where both vary between
0 and 1. If we choose to work with a fixed densityn, which is especially convenient atT = 0,
we must minimize�var +µn, which becomes the energyEvar per unit cell atT = 0.

We begin with our mean-field results atT = 0, which are shown in figures 4 and 5 for
the ‘CE’ structure. The energies of the F and the AF phases are shown in figure 4(a) as a
function of the dopant concentrationx. With the parameters chosen, the two phases are very
close in energy, and therefore the system can show transitions from one phase into another on
the application of heat or magnetic field or upon slight change of the Hamiltonian parameters.
The energies for the F and the AF phases are shown in figure 4(b) as a function ofU1 for
x = 1/2. The phase with the lowest energy is the equilibrium phase. As seen from the figure,
depending on the magnitude ofU1, either a charge-ordered or a charge-non-ordered phase
results. Figure 4(c) shows how the equilibrium phase ‘melts’ from the AFO to the FN phase
on application of a magnetic field.

We note the following points from figures 4 and 5:
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(a)

(b)

Figure 4. (a) The variations of theT = 0 mean-field energies of the ferromagnetic and anti-
ferromagnetic (CE structure) states withx. The parameters are:U0 = 10 eV, U1 = 0.285 eV, t =
0.15 eV, J = 10 meV, andJH = 0.8 eV. The energies are per two Mn sites in the lattice. (b)
The variation of the energies of the ferromagnetic and antiferromagnetic (CE) structures atT = 0
with the nearest-neighbour Coulomb repulsionU1 at x = 1/2. (c) The variation of the energies
of the ferromagnetic and antiferromagnetic phases illustrating the ‘melting’ of the charge-ordered
antiferromagnet into a charge-non-ordered ferromagnet induced by an applied magnetic fieldH .

(1) Charge ordering is favoured by largeU1, so by increasingU1 we can induce an FN–AFO
transition.

(2) The charge-ordered AFO phase can be ‘melted’ by the application of a weak magnetic
field as in experiments [18,20].
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(c)

Figure 4. (Continued)

(a) (b)

Figure 5. Variations of (a) the charge-order parameterδ and (b) the one-particle gapEg with U1
for the data of figure 4(b). The one-particle gaps were obtained from calculating the electronic
band structure at a large number ofk-points in the irreducible Brillouin zone.

(3) The FN–AFO transition is first order as can be seen from the jumps in the charge-order
parameter and band gap in figure 5. Note, in particular, that the gap that we get in the
AFO phase is comparable to the charge-ordering gaps found in experiments [28].

(4) Figure 4(b) also illustrates that, as we increase the bandwidth by increasingt , we
stabilize the ferromagnetic phase without charge ordering; but, if we lower the bandwidth,
we stabilize the antiferromagnetic, charge-ordered phase; this trend has been seen in
experiments [13].
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Figures 4(b) and 5(a), 5(b) therefore show a simultaneous, first-order phase transition from
a ferromagnetic to antiferromagnetic, charge-ordered to charge-non-ordered, and metal-to-
insulator transition asU1 is varied.

When considering plots like figure 4(b), one must, of course, make a Maxwell construction,
if necessary, to obtain a properly convex energy; our grand-canonical calculations atT > 0
account for this. Note also that the precise structure of the unit cells in different members of
the family Ln1−xAxMnO3 could be different from the CE structure that we consider here. We
have not tried to include all of these possible structures in our variational calculation, since
we principally wish to illustrate theessential mechanismfor charge ordering in this class of
compounds.

We have seen above that, by changing the Hamiltonian parameters, we can stabilize
different phases atT = 0. Thus different sets of values for the parameters in our model can
lead to different topologies of phase diagrams atT > 0. It is most convenient to work in the
grand-canonical ensemble in which the filling, i.e.,x, depends onT andµ. If µ is large and
negative,x ' 1, but if µ is large and positive,x ' 0. We first obtain our mean-field phase
diagram for model (1) in theT –µ plane and then obtain the correspondingT –x phase diagram.

Figure 6 shows qualitatively the phase diagram that we obtain from our model, where,
in addition to the CE structure relevant forx ' 0.5, we have also considered the ‘type-A’
and ‘type-G’ structures, relevant for the concentrationsx ' 0 andx ' 1, respectively. In
figure 7 we show the details of the phase diagram close tox = 0.5. The salient features of our
mean-field phase diagram are as follows. At lowT it has antiferromagnetic phases nearx ' 0
andx ' 1 as in experiments; the antiferromagnetic charge-ordered phase (AFO) appears in
the vicinity of x = 1/2; given the parameter values that we use, a weakly charge-ordered
ferromagnet (FO) is stabilized at lowT (it loses its charge ordering asT → 0). The AFO–FO
transition is first order; this leads to the two-phase regions shown in figure 7. They come
together at a point of equal concentration or azeotropic point.

Figure 6. Sketches of the global (a)T –µ and (b)T –x phase diagrams suggested from our model
by examining several crystal structures in addition to the CE structure. The temperatureT is in
units ofkB/t . The height of the central AFO phase is exaggerated to make it visible (see figure 7
for the correct scales).

It is worth mentioning that an important feature of the phase diagram of the manganites in
the electron-doped region—namely, that La1−xCaxMnO3 is antiferromagnetic over the entire
range of 0.5 6 x 6 1—is not reproduced from the one-band model, which we have studied
here. In the standard Anderson–Hasegawa double exchange, it is immaterial whether we have
electrons or holes as carriers. This is manifested in our model as a roughly symmetrical phase
diagram aboutx = 1/2 (figures 6 and 7), which is not seen in the experiments. This issue is
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Figure 7. The phase diagram obtained from our model nearx = 0.5. The CE structure has
the lowest free energy in this region. The hatched areas are regions of two-phase(AFO + FO)
coexistence, which come together at a point of equal concentration or azeotropic point atx = 1/2,
andT = TAF→F (the sharpness of this point in our figure is an artifact of the finite graphical
resolution). The parameters are:U1 = 0.285 eV,U0 = 10 eV, t = 0.15 eV,JH = 0.8 eV, and
J = 10 meV.

not addressed in any theoretical work to our knowledge. We think that a multi-band model
that includes not only the eg orbitals, but also the higher-lying, unoccupied t2g orbitals of
spins opposite to the core t2g spins, will be an important ingredient in determining the phase
diagram in the electron-doped regions. It is easy to see that hopping between the eg orbital
and the higher-lying t2g orbital will produce a non-standardantiferromagnetic DEX interaction
between the core t2g levels of neighbouring Mn atoms.

If we carry out our calculation in the presence of an external magnetic field, then the
temperatureTAF→F, at which this point of equal concentration occurs, drops rapidly withH

as shown in figure 8. This is in accord with experiments [18, 20] which have reported the
‘melting’ of the charge-ordered antiferromagnet on the application of a weak magnetic field.
Note that, given our parameters, the field required to reduceTAF→F to zero is comparable to
that found in experiments.

The behaviour of the charge-order parameter, defined as the difference between the charges
on the two sublattices,δ ≡ n• −n◦, as a function ofT (at fixedx = 1/2) and as a function ofx
(at fixedT = 0.015 eV) is shown, respectively, in figures 9 and 10 forH = 0; these illustrate
the first-order nature of the AFO–FO transition. In obtaining figure 10 we have used the lever
rule to compute the order parameterδ in the two-phase regions. Note that nearx = 1/2, the
pure AFO phase is stable only in a very narrow region ofx, and that our phase diagram is
roughly symmetrical aboutx = 1/2. We will return to a discussion of this symmetry and the
two-phase coexistence regimes in section 4.

Our zero-temperature FN phase (figure 4(c)) evolves smoothly at finiteT into an FO
phase (figure 8) with weak charge ordering. It would have been ideal, from the point of view
of experiments, which normally obtain a ferromagnetic metallic phase (i.e., our FN) above
the AFO phase, if this weak charge ordering had been absent in our model (at least at the
level of our mean-field theory). However, it is worth noting that charge-ordered insulating
phases are observed above low-T antiferromagnets in some systems such as Pr1−xCaxMnO3

(see figure 21 of reference [13]). To the extent that our model does not include all physically



8574 S K Mishra et al

Figure 8. The drop inTAF→F, the temperature at which the point of equal concentration occurs in
figure 7, with magnetic fieldH . The AFO phase at lowH melts to an FO phase asH increases.
There is a large jump in the charge-order parameter across the phase boundary, since the FO phase
turns out to have only a small degree of charge ordering, which actually goes to zero asT → 0.

Figure 9. The variation of the charge-order parameterδ and the magnetizationM (inset) with
temperatureT illustrating the AFO–FO transition at the point of equal concentration atx = 1/2
corresponding to figure 7.

relevant interactions like electron–phonon couplings, some of its predictions (e.g., weak charge
ordering in the finite-T FO phase) should be viewed as illustrating possible types of phase in
this class of systems.
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Figure 10. The variation of the charge-order parameterδ with dopant concentrationx at a fixed
temperatureT = 0.015 eV corresponding to figure 7.

4. Conclusions

We have presented a model for the CMR manganites which captures the competition between
double-exchange and superexchange interactions. The extended-Hubbard term in our model
is crucial for the metal–insulator transitions that are associated with the loss of charge ordering
seen in the experiments [15,16,20]. The magnetic field dependence of this transition is also in
good accord with experiments [18,20]. Thus our work, which complements other theoretical
studies [39–43], elucidates the nature of charge ordering in CMR manganites. A complete
theory of these materials must, of course, integrate these effects with those caused by electron–
phonon interactions, disorder, and orbital ordering. Before discussing this issue, we discuss
the experimental implications of some of our results.

Experiments are done at a fixed value ofx. If, at someT , x lies in a region of two-phase
coexistence, phase separation should occur and the equilibrium state should consist of two
phases separated by an interface. The equilibrium values ofx in these coexisting phases are
given by the boundaries of the coexistence curve at that value ofT . Such an equilibrium state
might be hard to obtain in experiments on the CMR manganites since dopant-atom diffusion
might be kinetically hindered. Furthermore, data analysis may be complicated by the possible
presence of multiple intermediate phases [44] and oxygen stoichiometry issues. Note that the
mere inclusion of long-range Coulomb interactions in our model will not suppress two-phase
coexistence regimes of the type shown in figures 6 and 7. These coexistence regimes will
be suppressedonly if, in addition, the dopant atoms do not phase separate, leading to a net
charge imbalance between the coexisting phases. It is also possible that long-range Coulomb
interactions might lead to the stabilization of phases with complicated ordering such as an
incommensurate (or disordered) phase, consisting of small insulating regions in a metallic
background or vice versa. The investigation of such orderings lies beyond the scope of our
study. On the experimental side, evidence for phase separation has been seen in several recent
experiments on the CMR samples. For example, from neutron measurements on samples
of La0.53Ca0.47MnO3, Rhyneet al [45] have found the coexistence of a ferromagnetic and
an antiferromagnetic phase, and Royet al have found the same from electrical conductivity
measurements [46]. A similar two-phase coexistence has also been recently reported for the
(La,Pr,Ca)MnO3 system [47].

We have restricted our study mostly to one type of antiferromagnetic ordering and one
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type of lattice—namely, the CE structure—since our principal goal in this paper is to illustrate
the mechanism of charge ordering. To obtain correct structures and changes to the structure
at these transitions, or charge-ordered phases interpreted as polaronic crystals [48], we must
of course include other interactions. By virtue of using a single-band model, motivated by
the Jahn–Teller splitting of the eg band in LaMnO3, we have implicitly accounted for some
degree of electron–phonon interactions; clearly a more detailed modelling of these interactions
is required to obtain charge-ordered phases that can be interpreted as polaronic crystals. We
note that, once charge ordering sets in because of the repulsion termU1, it will induce a
Jahn–Teller-type frozen-phonon distortion, i.e., a polaronic crystal. Also further-neighbour
superexchange terms, that should destabilize other phases like a conventional two-sublattice
antiferromagnet, might well have to be included to make the CE structure the most stable one
nearx = 1/2. But then one should use a multi-band model and perhaps also different values
for in-plane and out-of-plane hopping amplitudes, in view of the in-plane orientation of the
e(1)g orbital and orbital ordering [24, 49, 50]. Indeed, such models might well be required to
remove the near symmetry aboutx = 1/2 in our phase diagram (figure 7), which is not seen
in experiments.

Our paramagnetic phase is metallic, though in experiments it is normally insulating, even
away from commensurate fillings. Clearly disorder effects (both spin disorder [51] and disorder
arising from doping) must be included to make the AFO and PN phases insulating away from
half-filling. Furthermore, the FO–FN and FN–PN transition temperaturesTc are far too high
in our mean-field theory. This is not surprising, for it is well known that the Hartree–Fock
estimate for the antiferromagnet–paramagnet transition in the half-filled Hubbard model is
far too high (of the order of the on-site repulsionU rather than of the order of|t |2/U at
largeU ). Fluctuations neglected in our mean-field theory must therefore be included to get
a more reasonable estimate for the FN–PN transition temperature. However, it is not clear
yet how to use other approximations (like Schwinger-boson mean-field theories [52, 53] or
infinite-dimensionality methods [54]) for a model as complex as ours. An additional effect
that would reduce thisTc is the dynamical Jahn–Teller coupling between the electrons and
phonons, which has its physical origin in the fact that, as the electron moves from site to site, it
has a tendency of carrying the Jahn–Teller distortion around the Mn3+ octahedron along with
it. The quantum-mechanical nuclear wave function of the oxygen atom becomes involved,
and, as a consequence, the double exchange is diminished by a factor estimated to be as large
as three [31,32].

In summary, we have studied theoretically the competition between charge-ordered and
other magnetically ordered phases in the CMR manganites. Our study indicates the crucial role
of electron–electron interactions in stabilizing the charge order observed in the manganites.
Furthermore, we obtain from our study the two-phase coexistence region between AFO and
FO phases nearx = 1/2, consistent with evidence obtained from recent experiments.
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